Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Med Virol ; 95(6): e28833, 2023 06.
Article in English | MEDLINE | ID: covidwho-20241689

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents may increase risk for a variety of post-acute sequelae including new-onset type 1 diabetes mellitus (T1DM). Therefore, this meta-analysis aims to estimate the risk of developing new-onset type 1 diabetes in children and adolescents as post-acute sequelae of SARS-CoV-2 infection. PubMed/MEDLINE, CENTRAL, and EMBASE were systematically searched up to March 20, 2023. A systematic review and subsequent meta-analyses were performed to calculate the pooled effect size, expressed as risk ratio (RR) with corresponding 95% confidence interval (CI) of each outcome based on a one-stage approach and the random-effects estimate of the pooled effect sizes of each outcome were generated with the use of the DerSimonian-Laird method. Eight reports from seven studies involving 11 220 530 participants (2 140 897 patients with a history of diagnosed SARS-CoV-2 infection and 9 079 633 participants in the respective control groups) were included. The included studies reported data from four U.S. medical claims databases covering more than 503 million patients (IQVIA, HealthVerity, TriNetX, and Cerner Real-World Data), and three national health registries for all children and adolescents in Norway, Scotland, and Denmark. It was shown that the risk of new-onset T1DM following SARS-CoV-2 infection in children and adolescents was 42% (95% CI 13%-77%, p = 0.002) higher compared with non-COVID-19 control groups. The risk of developing new-onset T1DM following SARS-CoV-2 infection was significantly higher (67%, 95% CI 32 %-112%, p = 0.0001) in children and adolescents between 0 and 11 years, but not in those between 12 and 17 years (RR = 1.10, 95% CI 0.54-2.23, p = 0.79). We also found that the higher risk for developing new-onset T1DM following SARS-CoV-2 infection only exists in studies from the United States (RR = 1.70, 95% CI 1.37-2.11, p = 0.00001) but not Europe (RR = 1.02, 95% CI 0.67-1.55, p = 0.93). Furthermore, we found that SARS-CoV-2 infection was associated with an elevation in the risk of diabetic ketoacidosis (DKA) in children and adolescents compared with non-COVID-19 control groups (RR = 2.56, 95% CI 1.07-6.11, p = 0.03). Our findings mainly obtained from US medical claims databases, suggest that SARS-CoV-2 infection is associated with higher risk of developing new-onset T1DM and diabetic ketoacidosis in children and adolescents. These findings highlight the need for targeted measures to raise public health practitioners and physician awareness to provide intervention strategies to reduce the risk of developing T1DM in children and adolescents who have had COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Diabetic Ketoacidosis , Child , Humans , Adolescent , COVID-19/complications , COVID-19/epidemiology , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Cohort Studies
2.
J Biomed Inform ; 141: 104361, 2023 05.
Article in English | MEDLINE | ID: covidwho-2298614

ABSTRACT

BACKGROUND: The International Classification of Diseases (ICD) codes represent the global standard for reporting disease conditions. The current ICD codes connote direct human-defined relationships among diseases in a hierarchical tree structure. Representing the ICD codes as mathematical vectors helps to capture nonlinear relationships in medical ontologies across diseases. METHODS: We propose a universally applicable framework called "ICD2Vec" designed to provide mathematical representations of diseases by encoding corresponding information. First, we present the arithmetical and semantic relationships between diseases by mapping composite vectors for symptoms or diseases to the most similar ICD codes. Second, we investigated the validity of ICD2Vec by comparing the biological relationships and cosine similarities among the vectorized ICD codes. Third, we propose a new risk score called IRIS, derived from ICD2Vec, and demonstrate its clinical utility with large cohorts from the UK and South Korea. RESULTS: Semantic compositionality was qualitatively confirmed between descriptions of symptoms and ICD2Vec. For example, the diseases most similar to COVID-19 were found to be the common cold (ICD-10: J00), unspecified viral hemorrhagic fever (ICD-10: A99), and smallpox (ICD-10: B03). We show the significant associations between the cosine similarities derived from ICD2Vec and the biological relationships using disease-to-disease pairs. Furthermore, we observed significant adjusted hazard ratios (HR) and area under the receiver operating characteristics (AUROC) between IRIS and risks for eight diseases. For instance, the higher IRIS for coronary artery disease (CAD) can be the higher probability for the incidence of CAD (HR: 2.15 [95% CI 2.02-2.28] and AUROC: 0.587 [95% CI 0.583-0.591]). We identified individuals at substantially increased risk of CAD using IRIS and 10-year atherosclerotic cardiovascular disease risk (adjusted HR: 4.26 [95% CI 3.59-5.05]). CONCLUSIONS: ICD2Vec, a proposed universal framework for converting qualitatively measured ICD codes into quantitative vectors containing semantic relationships between diseases, exhibited a significant correlation with actual biological significance. In addition, the IRIS was a significant predictor of major diseases in a prospective study using two large-scale datasets. Based on this clinical validity and utility evidence, we suggest that publicly available ICD2Vec can be used in diverse research and clinical practices and has important clinical implications.


Subject(s)
COVID-19 , Coronary Artery Disease , Humans , Prospective Studies , Risk Factors , ROC Curve , International Classification of Diseases
3.
Rev Med Virol ; 33(2): e2414, 2023 03.
Article in English | MEDLINE | ID: covidwho-2268304

ABSTRACT

The susceptibility, risk factors, and prognosis of COVID-19 in patients with inflammatory bowel disease (IBD) remain unknown. Thus, our study aims to assess the prevalence and clinical outcomes of COVID-19 in IBD. We searched PubMed, EMBASE, and medRxiv from 2019 to 1 June 2022 for cohort and case-control studies comparing the prevalence and clinical outcomes of COVID-19 in patients with IBD and in the general population. We also compared the outcomes of patients receiving and not receiving 5-aminosalicylates (ASA), tumour necrosis factor antagonists, biologics, systemic corticosteroids, or immunomodulators for IBD. Thirty five studies were eligible for our analysis. Pooled odds ratio of COVID-19-related hospitalisation, intensive care unit (ICU) admission, or death in IBD compared to in non-IBD were 0.58 (95% confidence interval (CI) = 0.28-1.18), 1.09 (95% CI = 0.27-4.47), and 0.67 (95% CI = 0.32-1.42), respectively. Inflammatory bowel disease was not associated with increased hospitalisation, ICU admission, or death. Susceptibility to COVID-19 did not increase with any drugs for IBD. Hospitalisation, ICU admission, and death were more likely with 5-ASA and corticosteroid use. COVID-19-related hospitalisation (Odds Ratio (OR): 0.53; 95% CI = 0.38-0.74) and death (OR: 0.13; 95% CI = 0.13-0.70) were less likely with Crohn's disease than ulcerative colitis (UC). In conclusion, IBD does not increase the mortality and morbidity of COVID-19. However, physicians should be aware that additional monitoring is needed in UC patients or in patients taking 5-ASA or systemic corticosteroids.


Subject(s)
COVID-19 , Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/pathology , Colitis, Ulcerative/chemically induced , Crohn Disease/chemically induced , Adrenal Cortex Hormones , Mesalamine
5.
Vaccines (Basel) ; 10(10)2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2044030

ABSTRACT

The most effective method of limiting the coronavirus disease pandemic of 2019 (COVID-19) is vaccination. For the determination of the comparative efficacy and safety of COVID-19 vaccines and their platforms during the pre-Delta era, a systematic review and network meta-analysis was conducted. The MEDLINE, Embase, and MedRxiv databases were searched, and the gray literature was manually searched up to 8 July 2021. The review includes the phase II and III randomized controlled trials (RCTs) that assessed the efficacy, immunogenicity, and safety of the COVID-19 vaccines. The network meta-analysis used a Bayesian model and used the surface under the cumulative ranking to rank the comparisons between the vaccines. All included studies were quality appraised according to their design, and the heterogeneity of the analyses was assessed using I2. In terms of vaccine efficacy, the mRNA-1273 vaccine ranked the highest, and the CoronaVac vaccine ranked the lowest. The mRNA-1273 ranked the highest for neutralizing antibody responses to live SARS-CoV-2. The WIV04 vaccine was associated with the lowest incidence of both local and systemic adverse reactions. All studies except one had a low to moderate risk of bias. The mRNA platform vaccines showed higher efficacy and more adverse reactions than the other vaccines.

6.
Int J Infect Dis ; 119: 130-139, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1889472

ABSTRACT

OBJECTIVES: To meta-analyse the clinical manifestations, diagnosis, treatment, and mortality of vaccine-induced immune thrombotic thrombocytopenia (VITT) after adenoviral vector vaccination. METHODS: Eighteen studies of VITT after ChAdOx1 nCoV-19 or Ad26.COV2.S vaccine administration were reviewed from PubMed, Scopus, Embase, and Web of Science. The meta-analysis estimated the summary effects and between-study heterogeneity regarding the incidence, manifestations, sites of thrombosis, diagnostic findings, and clinical outcomes. RESULTS: The incidence of total venous thrombosis after ChAdOx1 nCoV-19 vaccination was 28 (95% CI 12-52, I2=100%) per 100,000 doses administered. Of 664 patients included in the quantitative analysis (10 studies), the mean age of patients with VITT was 45.6 years (95% CI 43.8-47.4, I2=57%), with a female predominance (70%). Cerebral venous thrombosis (CVT), deep vein thrombosis (DVT)/pulmonary thromboembolism (PE), and splanchnic vein thrombosis occurred in 54%, 36%, and 19% of patients with VITT, respectively. The pooled incidence rate of CVT after ChAdOx1 nCoV-19 vaccination (23 per 100,000 person-years) was higher than that reported in the pre-pandemic general population (0.9 per 100,000 person-years). Intracranial haemorrhage and extracranial thrombosis accompanied 47% and 33% of all patients with CVT, respectively. The antiplatelet factor 4 antibody positivity rate was 91% (95% CI 88-94, I2=0%) and the overall mortality was 32% (95% CI 24-41, I2=69%), and no significant difference was observed between heparin- and non-heparin-based anticoagulation treatments (risk ratio 0.84, 95% CI 0.47-1.50, I2=0%). CONCLUSIONS: Patients with VITT after SARS-CoV-2 vaccination most frequently presented with CVT following DVT/PE and splanchnic vein thrombosis, and about one-third of patients had a fatal outcome. This meta-analysis should provide a better understanding of VITT and assist clinicians in identifying VITT early to improve outcomes and optimise management.


Subject(s)
COVID-19 , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Thrombosis , Vaccines , Venous Thrombosis , Ad26COVS1 , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Female , Humans , Male , Middle Aged , Purpura, Thrombocytopenic, Idiopathic/epidemiology , Purpura, Thrombocytopenic, Idiopathic/etiology , SARS-CoV-2 , Thrombocytopenia/etiology , Thrombosis/epidemiology , Thrombosis/etiology , Venous Thrombosis/chemically induced , Venous Thrombosis/etiology
7.
J Med Virol ; 94(9): 4234-4245, 2022 09.
Article in English | MEDLINE | ID: covidwho-1850130

ABSTRACT

To provide a comparative meta-analysis and systematic review of the risk and clinical outcomes of coronavirus 2019 (COVID-19) infection between fully vaccinated and unvaccinated groups. Eighteen studies of COVID-19 infections in fully vaccinated ("breakthrough infections") and unvaccinated individuals were reviewed from Medline/PubMed, Scopus, Embase, and Web of Science databases. The meta-analysis examined the summary effects and between-study heterogeneity regarding differences in the risk of infection, hospitalization, treatments, and mortality between vaccinated and unvaccinated individuals. he overall risk of infection was lower for the fully vaccinated compared to that of the unvaccinated (relative risk [RR] 0.20, 95% confidence interval [CI]: 0.19-0.21), especially for variants other than Delta (Delta: RR 0.29, 95% CI: 0.13-0.65; other variants: RR 0.06, 95% CI: 0.04-0.08). The risk of asymptomatic infection was not statistically significantly different between fully vaccinated and unvaccinated (RR 0.56, 95% CI: 0.27-1.19). There were neither statistically significant differences in risk of hospitalization (RR 1.06, 95% CI: 0.38-2.93), invasive mechanical ventilation (RR 1.65, 95% CI: 0.90-3.06), or mortality (RR 1.19, 95% CI: 0.79-1.78). Conversely, the risk of supplemental oxygen during hospitalization was significantly higher for the unvaccinated (RR 1.40, 95% CI: 1.08-1.82). Unvaccinated people were more vulnerable to COVID-19 infection than fully vaccinated for all variants. Once infected, there were no statistically significant differences in the risk of hospitalization, invasive mechanical ventilation, or mortality. Still, unvaccinated showed an increased need for oxygen supplementation. Further prospective analysis, including patients' risk factors, COVID-19 variants, and the utilized treatment strategies, would be warranted.


Subject(s)
COVID-19 , Coronavirus Infections , COVID-19 Vaccines , Humans , SARS-CoV-2
8.
J Med Virol ; 94(9): 4144-4155, 2022 09.
Article in English | MEDLINE | ID: covidwho-1844139

ABSTRACT

It remains unclear how effective COVID-19 vaccinations will be in patients with weakened immunity due to diseases, transplantation, and dialysis. We conducted a systematic review comparing the efficacy of COVID-19 vaccination in patients with solid tumor, hematologic malignancy, autoimmune disease, inflammatory bowel disease, and patients who received transplantation or dialysis. A literature search was conducted twice using the Medline/PubMed database. As a result, 21 papers were included in the review, and seropositivity rate was summarized by specific type of disease, transplantation, and dialysis. When different papers studied the same type of patient group, a study with a higher number of participants was selected. Most of the solid tumor patients showed a seropositivity rate of more than 80% after the second inoculation, but a low seropositivity was found in certain tumors such as breast cancer. Research in patients with certain types of hematological malignancy and autoimmune diseases has also reported low seropositivity, and this may have been affected by the immunosuppressive treatment these patients receive. Research in patients receiving dialysis or transplantation has reported lower seropositivity rates than the general population, while all patients with inflammatory bowel disease have converted to be seropositive. Meta-analysis validating these results will be needed, and studies will also be needed on methods to protect patients with reduced immunity from COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , Autoimmune Diseases/complications , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Inflammatory Bowel Diseases/complications , Neoplasms/complications , Transplant Recipients
9.
J Med Virol ; 94(3): 1085-1095, 2022 03.
Article in English | MEDLINE | ID: covidwho-1718373

ABSTRACT

Two messenger RNA (mRNA) vaccines developed by Pfizer-BioNTech and Moderna are being rolled out. Despite the high volume of emerging evidence regarding adverse events (AEs) associated with the COVID-19 mRNA vaccines, previous studies have thus far been largely based on the comparison between vaccinated and unvaccinated control, possibly highlighting the AE risks with COVID-19 mRNA vaccination. Comparing the safety profile of mRNA vaccinated individuals with otherwise vaccinated individuals would enable a more relevant assessment for the safety of mRNA vaccination. We designed a comparative safety study between 18 755 and 27 895 individuals who reported to VigiBase for adverse events following immunization (AEFI) with mRNA COVID-19 and influenza vaccines, respectively, from January 1, 2020, to January 17, 2021. We employed disproportionality analysis to rapidly detect relevant safety signals and compared comparative risks of a diverse span of AEFIs for the vaccines. The safety profile of novel mRNA vaccines was divergent from that of influenza vaccines. The overall pattern suggested that systematic reactions like chill, myalgia, fatigue were more noticeable with the mRNA COVID-19 vaccine, while injection site reactogenicity events were more prevalent with the influenza vaccine. Compared to the influenza vaccine, mRNA COVID-19 vaccines demonstrated a significantly higher risk for a few manageable cardiovascular complications, such as hypertensive crisis (adjusted reporting odds ratio [ROR], 12.72; 95% confidence interval [CI], 2.47-65.54), and supraventricular tachycardia (adjusted ROR, 7.94; 95% CI, 2.62-24.00), but lower risk of neurological complications such as syncope, neuralgia, loss of consciousness, Guillain-Barre syndrome, gait disturbance, visual impairment, and dyskinesia. This study has not identified significant safety concerns regarding mRNA vaccination in real-world settings. The overall safety profile patterned a lower risk of serious AEFI following mRNA vaccines compared to influenza vaccines.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Adverse Drug Reaction Reporting Systems , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Pharmacovigilance , RNA, Messenger/genetics , World Health Organization , mRNA Vaccines
10.
Rev Med Virol ; 32(5): e2336, 2022 09.
Article in English | MEDLINE | ID: covidwho-1712178

ABSTRACT

The aim of this systematic review and network meta-analysis is to evaluate the comparative effectiveness of N95, surgical/medical and non-medical facemasks as personal protective equipment against respiratory virus infection. The study incorporated 35 published and unpublished randomized controlled trials and observational studies investigating specific mask effectiveness against influenza virus, SARS-CoV, MERS-CoV and SARS-CoV-2. We searched PubMed, Google Scholar and medRxiv databases for studies published up to 5 February 2021 (PROSPERO registration: CRD42020214729). The primary outcome of interest was the rate of respiratory viral infection. The quality of evidence was estimated using the GRADE approach. High compliance to mask-wearing conferred a significantly better protection (odds ratio [OR], 0.43; 95% confidence interval [CI], 0.23-0.82) than low compliance. N95 or equivalent masks were the most effective in providing protection against coronavirus infections (OR, 0.30; CI, 0.20-0.44) consistently across subgroup analyses of causative viruses and clinical settings. Evidence supporting the use of medical or surgical masks against influenza or coronavirus infections (SARS, MERS and COVID-19) was weak. Our study confirmed that the use of facemasks provides protection against respiratory viral infections in general; however, the effectiveness may vary according to the type of facemask used. Our findings encourage the use of N95 respirators or their equivalents (e.g., P2) for best personal protection in healthcare settings until more evidence on surgical and medical masks is accrued. This study highlights a substantial lack of evidence on the comparative effectiveness of mask types in community settings.


Subject(s)
COVID-19 , Respiratory Tract Infections , COVID-19/prevention & control , Humans , Masks , Network Meta-Analysis , Respiratory Tract Infections/prevention & control , SARS-CoV-2
11.
Eur Heart J ; 42(39): 4053-4063, 2021 Oct 14.
Article in English | MEDLINE | ID: covidwho-1633402

ABSTRACT

AIMS: The clinical manifestation and outcomes of thrombosis with thrombocytopenia syndrome (TTS) after adenoviral COVID-19 vaccine administration are largely unknown due to the rare nature of the disease. We aimed to analyse the clinical presentation, treatment modalities, outcomes, and prognostic factors of adenoviral TTS, as well as identify predictors for mortality. METHODS AND RESULTS: PubMed, Scopus, Embase, and Web of Science databases were searched and the resulting articles were reviewed. A total of 6 case series and 13 case reports (64 patients) of TTS after ChAdOx1 nCoV-19 vaccination were included. We performed a pooled analysis and developed a novel scoring system to predict mortality. The overall mortality of TTS after ChAdOx1 nCoV-19 vaccination was 35.9% (23/64). In our analysis, age ≤60 years, platelet count <25 × 103/µL, fibrinogen <150 mg/dL, the presence of intracerebral haemorrhage (ICH), and the presence of cerebral venous thrombosis (CVT) were significantly associated with death and were selected as predictors for mortality (1 point each). We named this novel scoring system FAPIC (fibrinogen, age, platelet count, ICH, and CVT), and the C-statistic for the FAPIC score was 0.837 (95% CI 0.732-0.942). Expected mortality increased with each point increase in the FAPIC score, at 2.08, 6.66, 19.31, 44.54, 72.94, and 90.05% with FAPIC scores 0, 1, 2, 3, 4, and 5, respectively. The FAPIC scoring model was internally validated through cross-validation and bootstrapping, then externally validated on a panel of TTS patients after Ad26.COV2.S administration. CONCLUSIONS: Fibrinogen levels, age, platelet count, and the presence of ICH and CVT were significantly associated with mortality in patients with TTS, and the FAPIC score comprising these risk factors could predict mortality. The FAPIC score could be used in the clinical setting to recognize TTS patients at high risk of adverse outcomes and provide early intensive interventions including intravenous immunoglobulins and non-heparin anticoagulants.


Subject(s)
COVID-19 , Thrombocytopenia , Thrombosis , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Middle Aged , SARS-CoV-2 , Vaccination
13.
Clin Transl Sci ; 15(2): 501-513, 2022 02.
Article in English | MEDLINE | ID: covidwho-1494654

ABSTRACT

On October 2020, the US Food and Drug Administration (FDA) approved remdesivir as the first drug for the treatment of coronavirus disease 2019 (COVID-19), increasing remdesivir prescriptions worldwide. However, potential cardiovascular (CV) toxicities associated with remdesivir remain unknown. We aimed to characterize the CV adverse drug reactions (ADRs) associated with remdesivir using VigiBase, an individual case safety report database of the World Health Organization (WHO). Disproportionality analyses of CV-ADRs associated with remdesivir were performed using reported odds ratios and information components. We conducted in vitro experiments using cardiomyocytes derived from human pluripotent stem cell cardiomyocytes (hPSC-CMs) to confirm cardiotoxicity of remdesivir. To distinguish drug-induced CV-ADRs from COVID-19 effects, we restricted analyses to patients with COVID-19 and found that, after adjusting for multiple confounders, cardiac arrest (adjusted odds ratio [aOR]: 1.88, 95% confidence interval [CI]: 1.08-3.29), bradycardia (aOR: 2.09, 95% CI: 1.24-3.53), and hypotension (aOR: 1.67, 95% CI: 1.03-2.73) were associated with remdesivir. In vitro data demonstrated that remdesivir reduced the cell viability of hPSC-CMs in time- and dose-dependent manners. Physicians should be aware of potential CV consequences following remdesivir use and implement adequate CV monitoring to maintain a tolerable safety margin.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/adverse effects , COVID-19 Drug Treatment , Cardiovascular Diseases/chemically induced , Pharmacovigilance , SARS-CoV-2 , Adenosine Monophosphate/adverse effects , Alanine/adverse effects , Databases, Factual , Humans , Myocytes, Cardiac/drug effects , Retrospective Studies , World Health Organization
14.
Lancet Rheumatol ; 3(10): e698-e706, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1486372

ABSTRACT

BACKGROUND: Real-world evidence on the association between autoimmune inflammatory rheumatic diseases, therapies related to these diseases, and COVID-19 outcomes are inconsistent. We aimed to investigate the potential association between autoimmune inflammatory rheumatic diseases and COVID-19 early in the COVID-19 pandemic. METHODS: We did an exposure-driven, propensity score-matched study using a South Korean nationwide cohort linked to general health examination records. We analysed all South Korean patients aged older than 20 years who underwent SARS-CoV-2 RT-PCR testing between Jan 1 and May 30, 2020, and received general health examination results from the Korean National Health Insurance Service. We defined autoimmune inflammatory rheumatic diseases (inflammatory arthritis and connective tissue diseases) based on the relevant ICD-10 codes, with at least two claims (outpatient or inpatient) within 1 year. The outcomes were positive SARS-CoV-2 RT-PCR test, severe COVID-19 (requirement of oxygen therapy, intensive care unit admission, application of invasive ventilation, or death), and COVID-19-related death. Adjusted odds ratios (ORs) with 95% CIs were estimated after adjusting for the potential confounders. FINDINGS: Between Jan 1 and May 30, 2020, 133 609 patients (70 050 [52·4%] female and 63 559 [47·6%] male) completed the general health examination and were tested for SARS-CoV-2; 4365 (3·3%) were positive for SARS-CoV-2, and 8297 (6·2%) were diagnosed with autoimmune inflammatory rheumatic diseases. After matching, patients with an autoimmune inflammatory rheumatic disease showed an increased likelihood of testing positive for SARS-CoV-2 (adjusted OR 1·19, 95% CI 1·03-1·40; p=0·026), severe COVID-19 outcomes (1·26, 1·02-1·59; p=0·041), and COVID-19-related death (1·69, 1·01-2·84; p=0·046). Similar results were observed in patients with connective tissue disease and inflammatory arthritis. Treatment with any dose of systemic corticosteroids or disease-modifying antirheumatic drugs (DMARDs) were not associated with COVID-19-related outcomes, but those receiving high dose (≥10 mg per day) of systemic corticosteroids had an increased likelihood of a positive SARS-CoV-2 test (adjusted OR 1·47, 95% CI 1·05-2·03; p=0·022), severe COVID-19 outcomes (1·76, 1·06-2·96; p=0·031), and COVID-19-related death (3·34, 1·23-8·90; p=0·017). INTERPRETATION: Early in the COVID-19 pandemic, autoimmune inflammatory rheumatic diseases were associated with an increased likelihood of a positive SARS-CoV-2 PCR test, worse clinical outcomes of COVID-19, and COVID-19-related deaths in South Korea. A high dose of systemic corticosteroid, but not DMARDs, showed an adverse effect on SARS-CoV-2 infection and COVID-19-related clinical outcomes. FUNDING: National Research Foundation of Korea.

15.
J Korean Med Sci ; 36(41): e291, 2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1485031

ABSTRACT

BACKGROUND: Evidence for the association between underlying non-alcoholic fatty liver disease (NAFLD), the risk of testing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive, and the clinical consequences of coronavirus disease 2019 (COVID-19) is controversial and scarce. We aimed to investigate the association between the presence of NAFLD and the risk of SARS-CoV-2 infectivity and COVID-19-related outcomes. METHODS: We used the population-based, nationwide cohort in South Korea linked with the general health examination records between January 1, 2018 and July 30, 2020. Data for 212,768 adults older than 20 years who underwent SARS-CoV-2 testing from January 1 to May 30, 2020, were obtained. The presence of NAFLDs was defined using three definitions, namely hepatic steatosis index (HSI), fatty liver index (FLI), and claims-based definition. The outcomes were SARS-CoV-2 test positive, COVID-19 severe illness, and related death. RESULTS: Among 74,244 adults who completed the general health examination, there were 2,251 (3.0%) who were SARS-CoV-2 positive, 438 (0.6%) with severe COVID-19 illness, and 45 (0.06%) COVID-19-related deaths. After exposure-driven propensity score matching, patients with pre-existing HSI-NAFLD, FLI-NAFLD, or claims-based NAFLD had an 11-23% increased risk of SARS-CoV-2 infection (HSI-NAFLD 95% confidence interval [CI], 1-28%; FLI-NAFLD 95% CI, 2-27%; and claims-based NAFLD 95% CI, 2-31%) and a 35-41% increased risk of severe COVID-19 illness (HSI-NAFLD 95% CI, 8-83%; FLI-NAFLD 95% CI, 5-71%; and claims-based NAFLD 95% CI, 1-92%). These associations are more evident as liver fibrosis advanced (based on the BARD scoring system). Similar patterns were observed in several sensitivity analyses including the full-unmatched cohort. CONCLUSION: Patients with pre-existing NAFLDs have a higher likelihood of testing SARS-CoV-2 positive and severe COVID-19 illness; this association was more evident in patients with NAFLD with advanced fibrosis. Our results suggest that extra attention should be given to the management of patients with NAFLD during the COVID-19 pandemic.


Subject(s)
COVID-19/etiology , Non-alcoholic Fatty Liver Disease/complications , SARS-CoV-2 , Adult , Aged , Cohort Studies , Disease Susceptibility , Female , Humans , Male , Middle Aged , Severity of Illness Index
16.
Clin Gastroenterol Hepatol ; 19(9): 1970-1972.e3, 2021 09.
Article in English | MEDLINE | ID: covidwho-1212376

ABSTRACT

Remdesivir has demonstrated clinical benefits in randomized placebo-controlled trials (RCTs) in patients with coronavirus disease 2019 (COVID-19)1-4 and was first approved for COVID-19 patients.5 However, whether remdesivir causes gastrointestinal adverse drug reaction (GI-ADRs) including hepatotoxicity is less clear.1-4,6 Therefore, we aimed to detect a diverse spectrum of GI-ADRs associated with remdesivir using VigiBase, the World Health Organization's international pharmacovigilance database of individual case safety reports.


Subject(s)
COVID-19 Drug Treatment , Drug-Related Side Effects and Adverse Reactions , Adenosine Monophosphate/analogs & derivatives , Adverse Drug Reaction Reporting Systems , Alanine/analogs & derivatives , Databases, Factual , Drug-Related Side Effects and Adverse Reactions/epidemiology , Humans , Pharmacovigilance , SARS-CoV-2 , World Health Organization
17.
Br J Sports Med ; 56(16): 901-912, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1322785

ABSTRACT

PURPOSE: To determine the potential associations between physical activity and risk of SARS-CoV-2 infection, severe illness from COVID-19 and COVID-19 related death using a nationwide cohort from South Korea. METHODS: Data regarding 212 768 Korean adults (age ≥20 years), who tested for SARS-CoV-2, from 1 January 2020 to 30 May 2020, were obtained from the National Health Insurance Service of South Korea and further linked with the national general health examination from 1 January 2018 to 31 December 2019 to assess physical activity levels. SARS-CoV-2 positivity, severe COVID-19 illness and COVID-19 related death were the main outcomes. The observation period was between 1 January 2020 and 31 July 2020. RESULTS: Out of 76 395 participants who completed the general health examination and were tested for SARS-CoV-2, 2295 (3.0%) were positive for SARS-CoV-2, 446 (0.58%) had severe illness from COVID-19 and 45 (0.059%) died from COVID-19. Adults who engaged in both aerobic and muscle strengthening activities according to the 2018 physical activity guidelines had a lower risk of SARS-CoV-2 infection (2.6% vs 3.1%; adjusted relative risk (aRR), 0.85; 95% CI 0.72 to 0.96), severe COVID-19 illness (0.35% vs 0.66%; aRR 0.42; 95% CI 0.19 to 0.91) and COVID-19 related death (0.02% vs 0.08%; aRR 0.24; 95% CI 0.05 to 0.99) than those who engaged in insufficient aerobic and muscle strengthening activities. Furthermore, the recommended range of metabolic equivalent task (MET; 500-1000 MET min/week) was associated with the maximum beneficial effect size for reduced risk of SARS-CoV-2 infection (aRR 0.78; 95% CI 0.66 to 0.92), severe COVID-19 illness (aRR 0.62; 95% CI 0.43 to 0.90) and COVID-19 related death (aRR 0.17; 95% CI 0.07 to 0.98). Similar patterns of association were observed in different sensitivity analyses. CONCLUSION: Adults who engaged in the recommended levels of physical activity were associated with a decreased likelihood of SARS-CoV-2 infection, severe COVID-19 illness and COVID-19 related death. Our findings suggest that engaging in physical activity has substantial public health value and demonstrates potential benefits to combat COVID-19.


Subject(s)
COVID-19 , Adult , Cohort Studies , Exercise , Humans , Risk , SARS-CoV-2 , Young Adult
18.
PLoS Med ; 17(12): e1003501, 2020 12.
Article in English | MEDLINE | ID: covidwho-999797

ABSTRACT

BACKGROUND: Numerous clinical trials and observational studies have investigated various pharmacological agents as potential treatment for Coronavirus Disease 2019 (COVID-19), but the results are heterogeneous and sometimes even contradictory to one another, making it difficult for clinicians to determine which treatments are truly effective. METHODS AND FINDINGS: We carried out a systematic review and network meta-analysis (NMA) to systematically evaluate the comparative efficacy and safety of pharmacological interventions and the level of evidence behind each treatment regimen in different clinical settings. Both published and unpublished randomized controlled trials (RCTs) and confounding-adjusted observational studies which met our predefined eligibility criteria were collected. We included studies investigating the effect of pharmacological management of patients hospitalized for COVID-19 management. Mild patients who do not require hospitalization or have self-limiting disease courses were not eligible for our NMA. A total of 110 studies (40 RCTs and 70 observational studies) were included. PubMed, Google Scholar, MEDLINE, the Cochrane Library, medRxiv, SSRN, WHO International Clinical Trials Registry Platform, and ClinicalTrials.gov were searched from the beginning of 2020 to August 24, 2020. Studies from Asia (41 countries, 37.2%), Europe (28 countries, 25.4%), North America (24 countries, 21.8%), South America (5 countries, 4.5%), and Middle East (6 countries, 5.4%), and additional 6 multinational studies (5.4%) were included in our analyses. The outcomes of interest were mortality, progression to severe disease (severe pneumonia, admission to intensive care unit (ICU), and/or mechanical ventilation), viral clearance rate, QT prolongation, fatal cardiac complications, and noncardiac serious adverse events. Based on RCTs, the risk of progression to severe course and mortality was significantly reduced with corticosteroids (odds ratio (OR) 0.23, 95% confidence interval (CI) 0.06 to 0.86, p = 0.032, and OR 0.78, 95% CI 0.66 to 0.91, p = 0.002, respectively) and remdesivir (OR 0.29, 95% CI 0.17 to 0.50, p < 0.001, and OR 0.62, 95% CI 0.39 to 0.98, p = 0.041, respectively) compared to standard care for moderate to severe COVID-19 patients in non-ICU; corticosteroids were also shown to reduce mortality rate (OR 0.54, 95% CI 0.40 to 0.73, p < 0.001) for critically ill patients in ICU. In analyses including observational studies, interferon-alpha (OR 0.05, 95% CI 0.01 to 0.39, p = 0.004), itolizumab (OR 0.10, 95% CI 0.01 to 0.92, p = 0.042), sofosbuvir plus daclatasvir (OR 0.26, 95% CI 0.07 to 0.88, p = 0.030), anakinra (OR 0.30, 95% CI 0.11 to 0.82, p = 0.019), tocilizumab (OR 0.43, 95% CI 0.30 to 0.60, p < 0.001), and convalescent plasma (OR 0.48, 95% CI 0.24 to 0.96, p = 0.038) were associated with reduced mortality rate in non-ICU setting, while high-dose intravenous immunoglobulin (IVIG) (OR 0.13, 95% CI 0.03 to 0.49, p = 0.003), ivermectin (OR 0.15, 95% CI 0.04 to 0.57, p = 0.005), and tocilizumab (OR 0.62, 95% CI 0.42 to 0.90, p = 0.012) were associated with reduced mortality rate in critically ill patients. Convalescent plasma was the only treatment option that was associated with improved viral clearance rate at 2 weeks compared to standard care (OR 11.39, 95% CI 3.91 to 33.18, p < 0.001). The combination of hydroxychloroquine and azithromycin was shown to be associated with increased QT prolongation incidence (OR 2.01, 95% CI 1.26 to 3.20, p = 0.003) and fatal cardiac complications in cardiac-impaired populations (OR 2.23, 95% CI 1.24 to 4.00, p = 0.007). No drug was significantly associated with increased noncardiac serious adverse events compared to standard care. The quality of evidence of collective outcomes were estimated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework. The major limitation of the present study is the overall low level of evidence that reduces the certainty of recommendations. Besides, the risk of bias (RoB) measured by RoB2 and ROBINS-I framework for individual studies was generally low to moderate. The outcomes deducted from observational studies could not infer causality and can only imply associations. The study protocol is publicly available on PROSPERO (CRD42020186527). CONCLUSIONS: In this NMA, we found that anti-inflammatory agents (corticosteroids, tocilizumab, anakinra, and IVIG), convalescent plasma, and remdesivir were associated with improved outcomes of hospitalized COVID-19 patients. Hydroxychloroquine did not provide clinical benefits while posing cardiac safety risks when combined with azithromycin, especially in the vulnerable population. Only 29% of current evidence on pharmacological management of COVID-19 is supported by moderate or high certainty and can be translated to practice and policy; the remaining 71% are of low or very low certainty and warrant further studies to establish firm conclusions.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Hydroxychloroquine/adverse effects , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/adverse effects , Alanine/analogs & derivatives , Alanine/therapeutic use , Anti-Inflammatory Agents/adverse effects , Azithromycin/adverse effects , Azithromycin/therapeutic use , COVID-19/mortality , COVID-19/therapy , Critical Illness , Hospitalization , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive , Network Meta-Analysis , Observational Studies as Topic , Randomized Controlled Trials as Topic , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL